Effective Field Theory for Density Functional Theory I

Dick Furnstahl

Department of Physics Ohio State University

February, 2006

I. Overview of EFT, RG, DFT for fermion many-body systems

(ロ) (部) (注) (注) (注) (の)

- II. EFT/DFT for dilute Fermi systems
- III. Refinements: Toward EFT/DFT for nuclei
- IV. Loose ends and challenges, Cold atoms, RG/DFT

Outline

Overview of Fermion Many-Body Systems

Density Functional Theory for Coulomb Systems

DFT for Nuclei? \Longrightarrow EFT and RG

Summary I

Dick Furnstahl EFT for DFT I

<□> <同> <同> < 回> < 回> < 回> < 回< の<(

Outline

Overview of Fermion Many-Body Systems

Density Functional Theory for Coulomb Systems

DFT for Nuclei? \implies EFT and RG

Summary I

Dick Furnstahl EFT for DFT I

Examples of Fermion Many-Body Systems

• Collections of "fundamental" fermions (electrons, quarks, ...)

• or of composites of odd number of fermions (e.g., protons)

Examples of Fermion Many-Body Systems

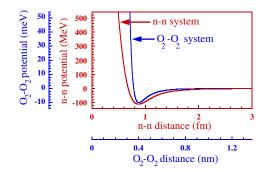
- Collections of "fundamental" fermions (electrons, quarks, ...)
 - or of composites of odd number of fermions (e.g., protons)
- Isolated atoms or molecules
 - electrons interacting via long-range (screened) Coulomb
 - find charge distribution, binding energy, bond lengths, ...
- Bulk solid-state materials
 - metals, insulators, semiconductors, superconductors, ...
- Liquid ³He (superfluid!)
- Cold fermionic atoms in (optical) traps [⁶Li or ⁷Li?]
- Atomic nuclei
- Neutron stars
 - neutron matter
 - color superconducting quark matter

Examples of Fermion Many-Body Systems

- Collections of "fundamental" fermions (electrons, quarks, ...)
 - or of composites of odd number of fermions (e.g., protons)
- Isolated atoms or molecules
 - electrons interacting via long-range (screened) Coulomb
 - find charge distribution, binding energy, bond lengths, ...
- Bulk solid-state materials
 - metals, insulators, semiconductors, superconductors, ...
- Liquid ³He (superfluid!)
- Cold fermionic atoms in (optical) traps [⁶Li or ⁷Li?]
- Atomic nuclei
- Neutron stars
 - neutron matter
 - color superconducting quark matter

Nuclear and Cold Atom Many-Body Problems

Lennard-Jones and nucleon-nucleon potentials

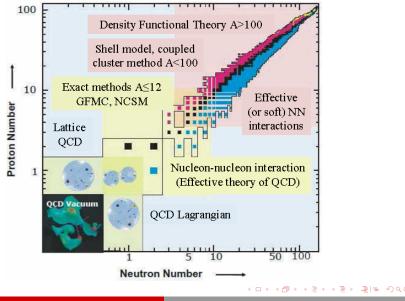


[figure borrowed from J. Dobaczewski]

- Are there universal features of such many-body systems?
- How can we deal with "hard cores" in many-body systems?

제 국가 문제님

The Big Picture (adapted from Richter @INPC2004)



Dick Furnstahl EFT for DFT I

The Many-Body Schrödinger Wave Function

[adapted from Joe Carlson]

→ 帰 ▶ → 臣 ▶ → 臣 ▶ 三目曰 → ○ < (

- How to represent the wave function for an A-body nucleus?
- Consider ⁸Be (Z = 4 protons, N = 4 neutrons)

 $|\Psi
angle = \sum_{\sigma, au} \chi_{\sigma} \chi_{ au} \phi(\mathbf{R})$ where **R** are the 3A spatial coordinates

$$\chi_{\sigma} = \downarrow_1 \uparrow_2 \cdots \downarrow_A (2^A \text{ terms}) = 256 \text{ for } A = 8$$

 $\chi_{\tau} = n_1 n_2 \cdots p_A (\frac{A!}{N!Z!} \text{ terms}) = 70 \text{ for } {}^8\text{Be}$

The Many-Body Schrödinger Wave Function

[adapted from Joe Carlson]

- How to represent the wave function for an A-body nucleus?
- Consider ⁸Be (Z = 4 protons, N = 4 neutrons)

 $|\Psi\rangle = \sum_{\sigma,\tau} \chi_{\sigma} \chi_{\tau} \phi(\mathbf{R})$ where **R** are the 3*A* spatial coordinates

$$\chi_{\sigma} = \downarrow_1 \uparrow_2 \cdots \downarrow_A (2^A \text{ terms}) = 256 \text{ for } A = 8$$

 $\chi_{\tau} = n_1 n_2 \cdots p_A (\frac{A!}{N!Z!} \text{ terms}) = 70 \text{ for } {}^8\text{Be}$

 So for ⁸Be there are 17,920 complex functions in 3A - 3 = 21 dimensions!

The Many-Body Schrödinger Wave Function

[adapted from Joe Carlson]

- How to represent the wave function for an A-body nucleus?
- Consider ⁸Be (Z = 4 protons, N = 4 neutrons)

 $|\Psi
angle = \sum_{\sigma, au} \chi_{\sigma} \chi_{ au} \phi(\mathbf{R})$ where **R** are the 3A spatial coordinates

$$\chi_{\sigma} = \downarrow_1 \uparrow_2 \cdots \downarrow_A (2^A \text{ terms}) = 256 \text{ for } A = 8$$

 $\chi_{\tau} = n_1 n_2 \cdots p_A \left(\frac{A!}{N!Z!} \text{ terms} \right) = 70 \text{ for } {}^8\text{Be}$

- So for ⁸Be there are 17,920 complex functions in 3A - 3 = 21 dimensions!
- Suppose you represent this for a nucleus of size 10 fm with a mesh spacing of 0.5 fm. You would need 10²⁷ grid points!

Hartree-Fock Wave Function

Best single Slater determinant in variational sense

$$|\Psi_{\rm HF}\rangle = \det\{\phi_i(\mathbf{x}), i = 1 \cdots A\}, \quad \mathbf{x} = (\mathbf{r}, \sigma, \tau)$$

• Hartree-Fock energy:

$$\bigcirc \cdots \bigcirc + (\bigcirc) \Rightarrow \bigcirc \bigcirc$$

$$\langle \Psi_{\rm HF} | \hat{\mathcal{H}} | \Psi_{\rm HF} \rangle = \sum_{i=1}^{A} \frac{\hbar^2}{2M} \int d\mathbf{x} \, \nabla \phi_i^* \cdot \nabla \phi_i + \frac{1}{2} \sum_{i,j=1}^{A} \int d\mathbf{x} \int d\mathbf{y} \, |\phi_i(\mathbf{x})|^2 v(\mathbf{x}, \mathbf{y}) |\phi_j(\mathbf{y})|^2 \\ - \frac{1}{2} \sum_{i,j=1}^{A} \int d\mathbf{x} \int d\mathbf{y} \, \phi_i^*(\mathbf{x}) \phi_i(\mathbf{y}) v(\mathbf{x}, \mathbf{y}) \phi_j^*(\mathbf{y}) \phi_j(\mathbf{x}) + \sum_{i=1}^{A} \int d\mathbf{y} \, v_{\rm ext}(\mathbf{y}) |\phi_j(\mathbf{y})|^2$$

• Determine the ϕ_i by varying with fixed normalization:

$$rac{\delta}{\delta \phi_i^*(\mathbf{x})} \Big(\langle \Psi_{
m HF} | \widehat{\mathcal{H}} | \Psi_{
m HF}
angle - \sum_{j=1}^{\mathcal{A}} \epsilon_j \int d\mathbf{y} \, |\phi_j(\mathbf{y})|^2 \Big) = 0$$

Hartree-Fock Wave Function

Best single Slater determinant in variational sense

$$|\Psi_{\rm HF}\rangle = \det\{\phi_i(\mathbf{x}), i = 1 \cdots A\}, \quad \mathbf{x} = (\mathbf{r}, \sigma, \tau)$$

• The $\phi_i(\mathbf{x})$ satisfy *non-local* Schrödinger equations:

$$-\frac{\nabla^2}{2M}\phi_i(\mathbf{x}) + \left(V_{\rm H}(\mathbf{x}) + v_{\rm ext}(\mathbf{x})\right)\phi_i(\mathbf{x}) + \int d\mathbf{y} \ V_{\rm E}(\mathbf{x}, \mathbf{y})\phi_i(\mathbf{y}) = \epsilon_i\phi_i(\mathbf{x})$$

Solve self-consistently; non-trivial because non-local

Outline

Overview of Fermion Many-Body Systems

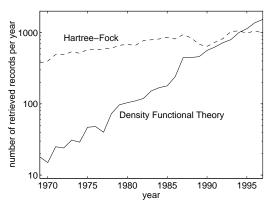
Density Functional Theory for Coulomb Systems

DFT for Nuclei? \Longrightarrow EFT and RG

Summary I

Density Functional Theory (DFT)

- Dominant application: inhomogeneous electron gas
- Interacting point electrons in static potential of atomic nuclei
- "Ab initio" calculations of atoms, molecules, crystals, surfaces, ...



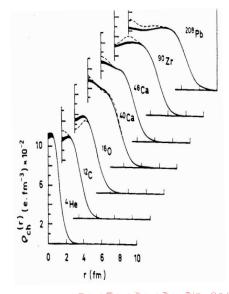
< E

Density Functional Theory (DFT)

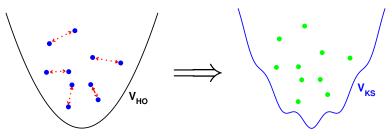
 Hohenberg-Kohn: There exists an energy functional *E_{Vext}*[ρ] ...

$$E_{v_{\text{ext}}}[
ho] = F_{\text{HK}}[
ho] + \int d^3x \, v_{\text{ext}}(\mathbf{x})
ho(\mathbf{x})$$

- *F*_{HK} is *universal* (same for any external *v*_{ext}) ⇒ *H*₂ to DNA!
- Useful if you can approximate the energy functional
- Introduce orbitals and minimize energy functional ⇒ E_{gs}, ρ_{gs}

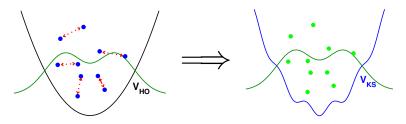


Kohn-Sham DFT for $v_{ext} = V_{HO}$ Harmonic Trap



Dick Furnstahl EFT for DFT I

Kohn-Sham DFT for $v_{ext} = V_{HO}$ Harmonic Trap



Interacting density in V_{HO} ≡ Non-interacting density in V_{KS}
Orbitals {ψ_i(**x**)} in local potential V_{KS}([ρ], **x**)

$$[-\nabla^2/2m + V_{\rm KS}(\mathbf{x})]\psi_i = \varepsilon_i\psi_i \implies \rho(\mathbf{x}) = \sum_{i=1}^A |\psi_i(\mathbf{x})|^2$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q(

- Find Kohn-Sham potential $V_{\rm KS}([\rho], \mathbf{x})$ from $\delta E_{v_{\rm ext}}[\rho]/\delta \rho(\mathbf{x})$
- Solve self-consistently

DFT for Solid-State or Molecular Systems

• HK free energy for an inhomogeneous electron gas

$$\mathcal{F}_{\mathrm{HK}}[\rho(\mathbf{x})] = \mathcal{T}_{\mathrm{KS}}[\rho(\mathbf{x})] + \frac{e^2}{2} \int d^3x \, d^3x' \frac{\rho(\mathbf{x})\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} + \mathcal{E}_{\mathrm{xc}}[\rho(\mathbf{x})]$$

• Then
$$V_{\rm KS} = v_{\rm ext} - e\phi + v_{\rm xc}$$
 with $v_{\rm xc}({\bf x}) = \delta E_{\rm xc}/\delta
ho({\bf x})$

• Kohn-Sham $T_{KS}[\rho(\mathbf{x})]$: find normalized $\{\psi_i, \epsilon_i\}$ from

$$\left(-\frac{\hbar^2}{2m}\nabla^2+V_{\rm KS}(\mathbf{x})\right)\psi_i(\mathbf{x})=\epsilon_i\psi_i(\mathbf{x})$$

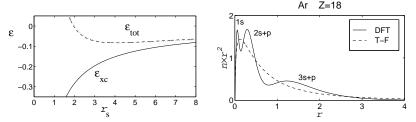
so that $\rho(\mathbf{x}) = \sum_{i=1}^{A} |\psi_i(\mathbf{x})|^2$ and

$$T_{\rm KS}[\rho(\mathbf{x})] = \sum_{i=1}^{A} \langle \psi_i | -\frac{\hbar^2}{2m} \nabla_i^2 | \psi_i \rangle = \sum_{i=1}^{A} \epsilon_i - \int d^3 x \, \rho(\mathbf{x}) \, V_{\rm KS}(\mathbf{x})$$

• Local density approximation: $E_{xc}[\rho(\mathbf{x})] \approx \int d^3x \, \mathcal{E}_{xc}(\rho(\mathbf{x}))$

• fit $\mathcal{E}_{xc}(\rho)$ to Monte Carlo calculation of uniform electron gas

Kohn-Sham



in practice, use parametric formulas for energy density, e.g.,

 $\mathcal{E}_{\rm xc}(\rho)/\rho = -0.458/r_{\rm s} - 0.0666G(r_{\rm s}/11.4)$

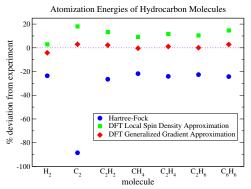
with
$$G(x) = \frac{1}{2} \left\{ (1+x)^3 \log(1+x^{-1}) - x^2 + \frac{1}{2}x - \frac{1}{3} \right\}$$

just like "naive" Hartree approach with additional potential:

$$V_{\rm xc}(\mathbf{x}) = \left. \frac{d[\mathcal{E}_{\rm xc}(\rho)]}{d\rho} \right|_{\rho=\rho(\mathbf{x}), \quad \langle \mathcal{P} \rangle \land \langle$$

Density Functional Theory (DFT)

- Dominant application: inhomogeneous electron gas
- Interacting point electrons in static potential of atomic nuclei
- "Ab initio" calculations of atoms, molecules, crystals, surfaces, ...
- HF is good starting point, DFT/LDA is better, DFT/GGA is best



e.g., van Leeuwen-Baerends GGA

$$v_{\mathrm{xc}}(\mathbf{r}) = -\beta \rho^{1/3}(\mathbf{r}) \frac{x^2(\mathbf{r})}{1 + 3\beta x(\mathbf{r}) \sinh^{-1}(x(\mathbf{r}))}$$

with
$$x = |\nabla \rho| / \rho^{4/3}$$

Dick Furnstahl EFT for DFT I

A Chemist's Guide to DFT (Koch & Holthausen, 2000)

"To many, the success of DFT appeared somewhat miraculous, and maybe even unjust and unjustified. Unjust in view of the easy achievement of accuracy that was so hard to come by in the wave function based methods. And unjustified it appeared to those who doubted the soundness of the theoretical foundations. "

A Chemist's Guide to DFT (Koch & Holthausen, 2000)

"To many, the success of DFT appeared somewhat miraculous, and maybe even unjust and unjustified. Unjust in view of the easy achievement of accuracy that was so hard to come by in the wave function based methods. And unjustified it appeared to those who doubted the soundness of the theoretical foundations. "

Density Functional Theory (AJP, Argaman & Makov, 2000)

"It is important to stress that all practical applications of DFT rest on essentially uncontrolled approximations, such as the LDA ..."

A Chemist's Guide to DFT (Koch & Holthausen, 2000)

"To many, the success of DFT appeared somewhat miraculous, and maybe even unjust and unjustified. Unjust in view of the easy achievement of accuracy that was so hard to come by in the wave function based methods. And unjustified it appeared to those who doubted the soundness of the theoretical foundations. "

Density Functional Theory (AJP, Argaman & Makov, 2000)

"It is important to stress that all practical applications of DFT rest on essentially uncontrolled approximations, such as the LDA ..."

Meta-Generalized Gradient Approximation (Perdew et al., 1999)

"Some say that 'there is no systematic way to construct density functional approximations.' But there are more or less systematic ways, and the approach taken ... here is one of the former."

Preview of DFT as Effective Action

- Recall ordinary thermodynamics with N particles at T = 0
- Use a chemical potential μ as source to change $\langle \hat{N} \rangle$

$$\Omega(\mu) = -kT \ln Z(\mu)$$
 and $N = -\left(\frac{\partial \Omega}{\partial \mu}\right)_{TV}$

• Invert to find $\mu(N)$, Legendre transform to F(N)

$$F(N) = \Omega(\mu(N)) + \mu(N)N$$

 \implies This is our energy function!

得下 イヨト イヨト ヨヨ つく(

Preview of DFT as Effective Action

- Recall ordinary thermodynamics with N particles at T = 0
- Use a chemical potential μ as source to change $\langle \widehat{N} \rangle$

$$\Omega(\mu) = -kT \ln Z(\mu)$$
 and $N = -\left(\frac{\partial \Omega}{\partial \mu}\right)_{TV}$

• Invert to find $\mu(N)$, Legendre transform to F(N)

$$F(N) = \Omega(\mu(N)) + \mu(N)N$$

 \implies This is our energy function!

• Generalize to spatially dependent chemical potential $J(\mathbf{x})$

$$Z(\mu) \longrightarrow Z[J(\mathbf{x})]$$
 and $\mu N = \mu \int \psi^{\dagger} \psi \longrightarrow \int J(\mathbf{x}) \psi^{\dagger} \psi(\mathbf{x})$

• LT from $\ln Z[J(\mathbf{x})]$ to $\Gamma[\rho(\mathbf{x})]$, where $\rho = \langle \psi^{\dagger}\psi \rangle_J \Longrightarrow \mathsf{DFT}!$

Outline

Overview of Fermion Many-Body Systems

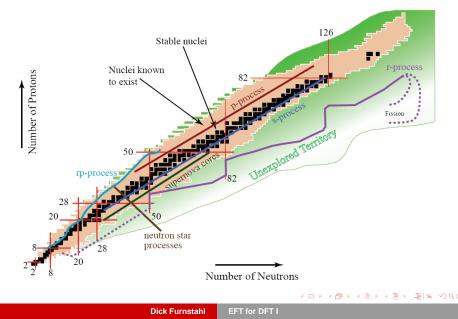
Density Functional Theory for Coulomb Systems

DFT for Nuclei? \Longrightarrow EFT and RG

Summary I

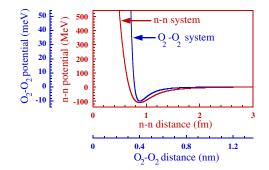
Dick Furnstahl EFT for DFT I

Table of the Nuclides



Nuclear and Cold Atom Many-Body Problems

• Lennard-Jones and nucleon-nucleon potentials



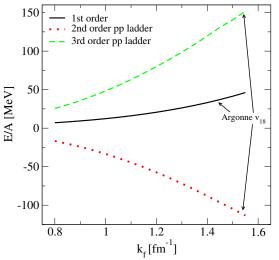
[figure borrowed from J. Dobaczewski]

- Are there universal features of such many-body systems?
- How can we deal with "hard cores" in many-body systems?

▲ 글 ▶ _ 글 [님

Nuclear Matter in Low-Order Perturbation Theory

- Standard Argonne v₁₈ potential
- Brueckner ladders order-by-order
- 1st order is Hartree-Fock ⇒ unbound!
- Repulsive core ⇒ series diverges



Hartree-Fock Wave Function

with

• Best single Slater determinant in variational sense

$$|\Psi_{\rm HF}\rangle = \det\{\phi_i(\mathbf{x}), i = 1 \cdots A\}, \quad \mathbf{x} = (\mathbf{r}, \sigma, \tau)$$

• The $\phi_i(\mathbf{x})$ satisfy *non-local* Schrödinger equations:

 $\bigcirc --- \bigcirc + \langle | \rangle \Rightarrow$

$$-\frac{\nabla^2}{2M}\phi_i(\mathbf{x}) + V_{\rm H}(\mathbf{x})\phi_i(\mathbf{x}) + \int d\mathbf{y} \, V_{\rm ex}(\mathbf{x}, \mathbf{y})\phi_i(\mathbf{y}) = \epsilon_i \phi_i(\mathbf{x})$$
$$V_{\rm H}(\mathbf{x}) = \int d\mathbf{y} \sum_{j=1}^A |\phi_j(\mathbf{y})|^2 \mathbf{v}(\mathbf{x}, \mathbf{y}), \quad V_{\rm ex}(\mathbf{x}, \mathbf{y}) = -v(\mathbf{x}, \mathbf{y}) \sum_{j=1}^A \phi_j(\mathbf{x})\phi_j^*(\mathbf{y})$$

• Solve self-consistently; somewhat tricky because non-local \implies much simpler if $v(\mathbf{x}, \mathbf{y}) \propto \delta(\mathbf{x} - \mathbf{y})$

▶ < □ ▶ < □ ▶ < □ ▶ = □ = · ○ Q(</p>

Skyrme Hartree-Fock Energy Functionals

• Skyrme: Do Hartree-Fock with $V_2^{\text{Skyrme}} + V_3^{\text{Skyrme}}$, where $\langle \mathbf{k} | V_2^{\text{Skyrme}} | \mathbf{k}' \rangle = t_0 + \frac{1}{2} t_1 (\mathbf{k}^2 + {\mathbf{k}'}^2) + t_2 \mathbf{k} \cdot \mathbf{k}' + i W_0 (\sigma_1 + \sigma_2) \cdot \mathbf{k} \times \mathbf{k}'$

Skyrme Hartree-Fock Energy Functionals

- Skyrme: Do Hartree-Fock with $V_2^{\text{Skyrme}} + V_3^{\text{Skyrme}}$, where $\langle \mathbf{k} | V_2^{\text{Skyrme}} | \mathbf{k}' \rangle = t_0 + \frac{1}{2} t_1 (\mathbf{k}^2 + {\mathbf{k}'}^2) + t_2 \mathbf{k} \cdot \mathbf{k}' + i W_0 (\sigma_1 + \sigma_2) \cdot \mathbf{k} \times \mathbf{k}'$
- Motivates Skyrme energy density functional (for N = Z):

$$\begin{aligned} \mathcal{E}[\rho,\tau,\mathbf{J}] &= \frac{1}{2M}\tau + \frac{3}{8}t_0\rho^2 + \frac{1}{16}t_3\rho^{2+\alpha} + \frac{1}{16}(3t_1 + 5t_2)\rho\tau \\ &+ \frac{1}{64}(9t_1 - 5t_2)(\nabla\rho)^2 - \frac{3}{4}W_0\rho\nabla\cdot\mathbf{J} + \frac{1}{32}(t_1 - t_2)\mathbf{J}^2 \end{aligned}$$

• where $\rho(\mathbf{x}) = \sum_{i} |\phi_i(\mathbf{x})|^2$ and $\tau(\mathbf{x}) = \sum_{i} |\nabla \phi_i(\mathbf{x})|^2$ (and J)

Skyrme Hartree-Fock Energy Functionals

- Skyrme: Do Hartree-Fock with $V_2^{\text{Skyrme}} + V_3^{\text{Skyrme}}$, where $\langle \mathbf{k} | V_2^{\text{Skyrme}} | \mathbf{k}' \rangle = t_0 + \frac{1}{2} t_1 (\mathbf{k}^2 + {\mathbf{k}'}^2) + t_2 \mathbf{k} \cdot \mathbf{k}' + i W_0 (\sigma_1 + \sigma_2) \cdot \mathbf{k} \times \mathbf{k}'$
- Motivates Skyrme energy density functional (for N = Z):

$$\begin{aligned} \mathcal{E}[\rho,\tau,\mathbf{J}] &= \frac{1}{2M}\tau + \frac{3}{8}t_0\rho^2 + \frac{1}{16}t_3\rho^{2+\alpha} + \frac{1}{16}(3t_1 + 5t_2)\rho\tau \\ &+ \frac{1}{64}(9t_1 - 5t_2)(\nabla\rho)^2 - \frac{3}{4}W_0\rho\nabla\cdot\mathbf{J} + \frac{1}{32}(t_1 - t_2)\mathbf{J}^2 \end{aligned}$$

• where $\rho(\mathbf{x}) = \sum_{i} |\phi_i(\mathbf{x})|^2$ and $\tau(\mathbf{x}) = \sum_{i} |\nabla \phi_i(\mathbf{x})|^2$ (and J)

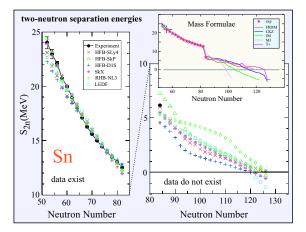
• Minimize $\boldsymbol{E} = \int d\boldsymbol{x} \, \mathcal{E}[\rho, \tau, \mathbf{J}]$ by varying the (normalized) ϕ_i 's

$$\left(-\nabla \frac{1}{2M^*(\mathbf{x})}\nabla + U(\mathbf{x}) + \frac{3}{4}W_0\nabla\rho \cdot \frac{1}{i}\nabla\times\sigma\right)\phi_{\mathbf{i}}(\mathbf{x}) = \epsilon_{\mathbf{i}}\phi_{\mathbf{i}}(\mathbf{x}) ,$$

 $U = \frac{3}{4}t_0\rho + (\frac{3}{16}t_1 + \frac{5}{16}t_2)\tau + \cdots \text{ and } \frac{1}{2M^*(\mathbf{x})} = \frac{1}{2M} + (\frac{3}{16}t_1 + \frac{5}{16}t_2)\rho$ • Iterate until ϕ_i 's and ϵ_i 's are self-consistent

Problems with Extrapolations

• Mass formulas and energy functionals do well where there is data, but elsewhere ...



Questions and Criticisms of Skyrme HF

- Typical [e.g., SkIII] model parameters (in units of MeV-fm^{*n*}): $t_0 = -1129$ $t_1 = 395$ $t_2 = -95$ $t_3 = 14000$ $W_0 = 120$
 - These seem large; is there an expansion parameter?
 - Where does $\rho^{2+\alpha}$ come from? Why not $\rho^{2+\beta}$?
 - Parameter Fitting [von Neumann via Fermi via Dyson]: "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q(

Questions and Criticisms of Skyrme HF

- Typical [e.g., SkIII] model parameters (in units of MeV-fm^{*n*}): $t_0 = -1129$ $t_1 = 395$ $t_2 = -95$ $t_3 = 14000$ $W_0 = 120$
 - These seem large; is there an expansion parameter?
 - Where does $\rho^{2+\alpha}$ come from? Why not $\rho^{2+\beta}$?
 - Parameter Fitting [von Neumann via Fermi via Dyson]: "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

Skyrme HF is only mean-field; too simple for NN correlations

- Law of the Conservation of Difficulty "Difficulty in a solution to a problem is always conserved regardless of the technique used in the solution."
- How do we improve the approach? Is pairing treated correctly?

<□> < □> < □> < □> < □> < □> < □> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Questions and Criticisms of Skyrme HF

- Typical [e.g., SkIII] model parameters (in units of MeV-fm^{*n*}): $t_0 = -1129$ $t_1 = 395$ $t_2 = -95$ $t_3 = 14000$ $W_0 = 120$
 - These seem large; is there an expansion parameter?
 - Where does $\rho^{2+\alpha}$ come from? Why not $\rho^{2+\beta}$?
 - Parameter Fitting [von Neumann via Fermi via Dyson]: "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

Skyrme HF is only mean-field; too simple for NN correlations

• Law of the Conservation of Difficulty "Difficulty in a solution to a problem is always conserved regardless of the technique used in the solution."

• How do we improve the approach? Is pairing treated correctly?

How does Skyrme HF relate to NN (and NNN) forces?

(Nuclear) Many-Body Physics: "Old" Approach

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

Dick Furnstahl EFT for DFT I

<□> < □> < □> < □> < □> < □> < □> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(Nuclear) Many-Body Physics: "Old" Approach

One Hamiltonian for all problems and energy/length scales (not QCD!)	For nuclear structure, protons and neutrons with a <i>local</i> potential fit to NN data

For nuclear structure, protons and neutrons with a <i>local</i> potential fit to NN data
NN potential with $\chi^2/dof \approx$ 1 up to \sim 300 MeV energy

(Nuclear) Many-Body Physics: "Old" Approach

One Hamiltonian for all problems and energy/length scales (not QCD!)	For nuclear structure, protons and neutrons with a <i>local</i> potential fit to NN data
Find the "best" potential	NN potential with $\chi^2/{ m dof}pprox$ 1 up to \sim 300 MeV energy
Two-body data may be sufficient; many-body forces as last resort	Let phenomenology dictate whether three-body forces are needed (answer: yes!)

(Nuclear) Many-Body Physics: "Old" Approach

One Hamiltonian for all problems and energy/length scales (not QCD!)	For nuclear structure, protons and neutrons with a <i>local</i> potential fit to NN data
Find the "best" potential	NN potential with $\chi^2/{ m dof} pprox$ 1 up to \sim 300 MeV energy
Two-body data may be sufficient; many-body forces as last resort	Let phenomenology dictate whether three-body forces are needed (answer: yes!)
Avoid (hide) divergences	Add "form factor" to suppress high-energy intermediate states; don't consider cutoff dependence

(Nuclear) Many-Body Physics: "Old" Approach

One Hamiltonian for all problems and energy/length scales (not QCD!)	For nuclear structure, protons and neutrons with a <i>local</i> potential fit to NN data
Find the "best" potential	NN potential with $\chi^2/{ m dof} pprox$ 1 up to \sim 300 MeV energy
Two-body data may be sufficient; many-body forces as last resort	Let phenomenology dictate whether three-body forces are needed (answer: yes!)
Avoid (hide) divergences	Add "form factor" to suppress high-energy intermediate states; don't consider cutoff dependence
Choose approximations by "art"	Use physical arguments (often handwaving) to justify the subset of diagrams used

Why Use EFT For Many-Body Physics?

- Systematic calculations with error estimates
- Reliable, model independent extrapolation
- Analogy between EFT and basic numerical analysis
 - naive error analysis: pick a method and reduce the mesh size (e.g., increase grid points) until the error is "acceptable"
 - sophisticated error analysis: understand scaling and sources of error (e.g., algorithm vs. round-off errors)

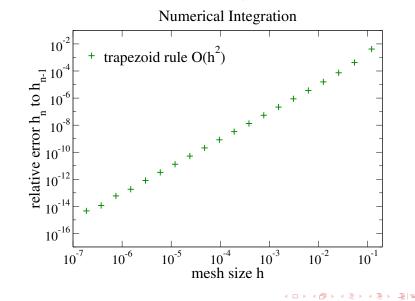
 \implies Does it work as well as it should?

- representation dependence

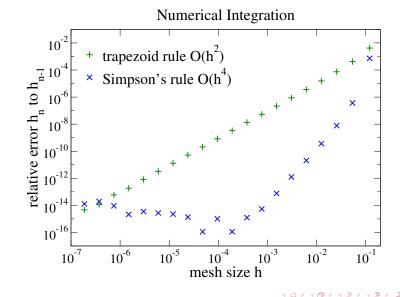
 not all are equally effective!
- extrapolation: completeness of an expansion basis
- Quantum mechanics makes EFT trickier!

▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ りへ(

Error Plots in Numerical Analysis

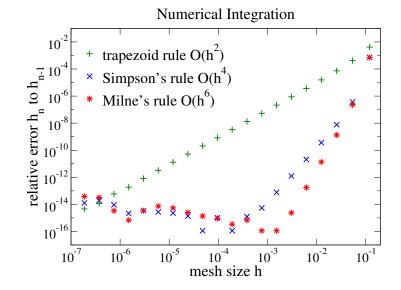


Error Plots in Numerical Analysis



э

Error Plots in Numerical Analysis



토▶∢토▶ 토|비 ���

A 10-

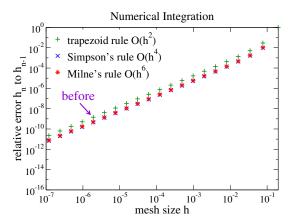
The Representation Can Make A Difference!

$$\int_0^1 \sqrt{(1-x^2)(2-x)} \, dx$$

• E.g., elliptic integral:

$$\int_0^1 \sqrt{(1-x^2)(2-x)} \, dx$$

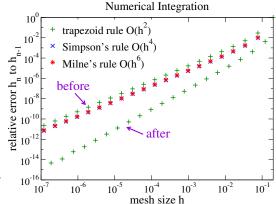
• How do the numerical errors behave?



$$\int_0^1 \sqrt{(1-x^2)(2-x)} \, dx$$

- How do the numerical errors behave?
- After transformation:

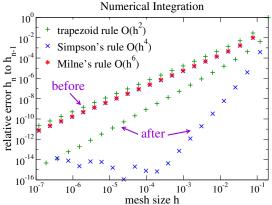
$$\int_0^{\pi/2} \sin^2 y \, \sqrt{2 - \cos y} \, dy$$



$$\int_0^1 \sqrt{(1-x^2)(2-x)} \, dx$$

- How do the numerical errors behave?
- After transformation:

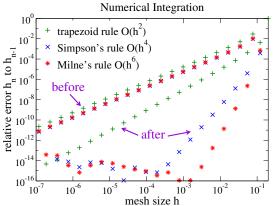
$$\int_0^{\pi/2} \sin^2 y \, \sqrt{2 - \cos y} \, dy$$



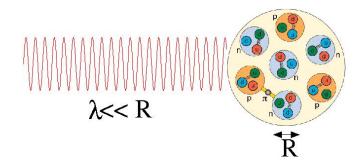
$$\int_0^1 \sqrt{(1-x^2)(2-x)} \, dx$$

- How do the numerical errors behave?
- After transformation:

$$\int_0^{\pi/2} \sin^2 y \, \sqrt{2 - \cos y} \, dy$$



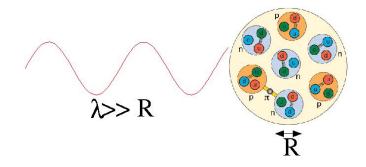
Principles of Effective Low-Energy Theories



Dick Furnstahl EFT for DFT I

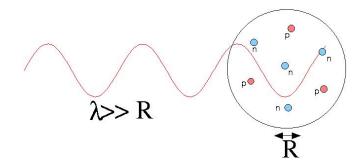
(日)

Principles of Effective Low-Energy Theories



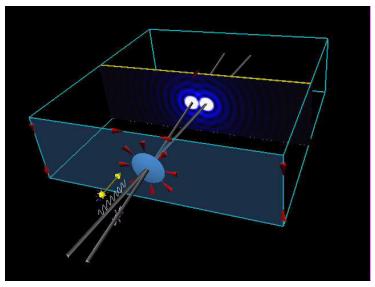
If system is probed at low energies, fine details not resolved

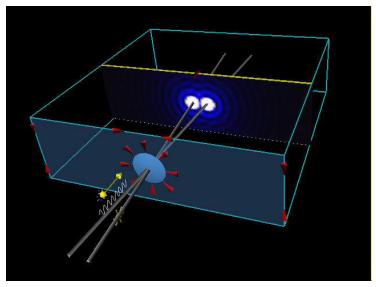
Principles of Effective Low-Energy Theories

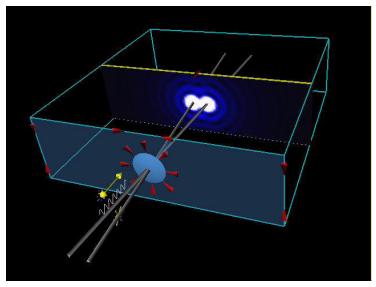


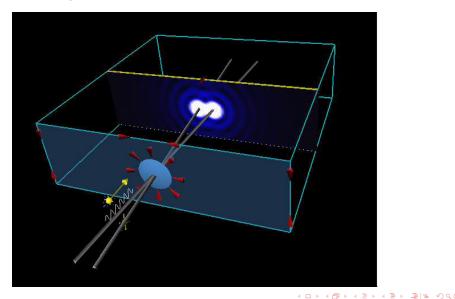
If system is probed at low energies, fine details not resolved

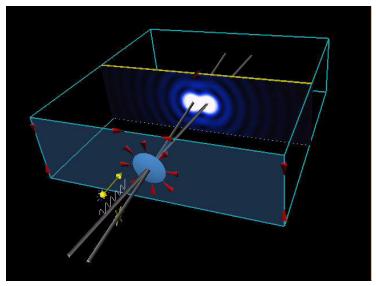
- use low-energy variables for low-energy processes
- short-distance structure can be replaced by something simpler without distorting low-energy observables



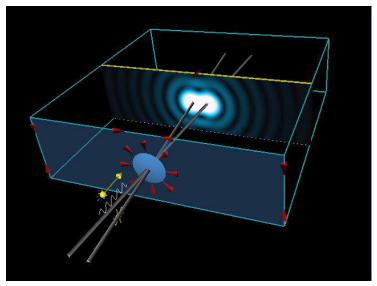


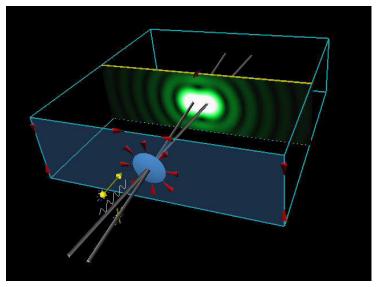


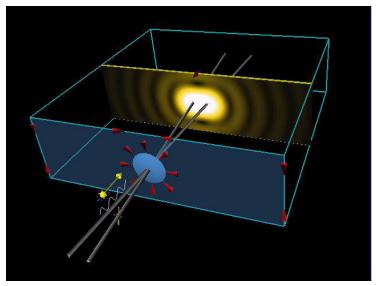




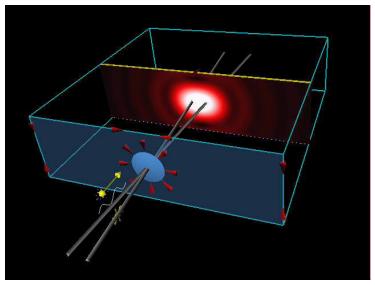
(日)





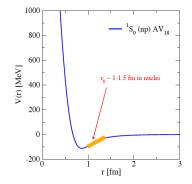


▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖■ 約9()



Sources of Nonperturbative Physics for NN

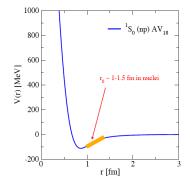
- 1 Strong short-range repulsion ("hard core")
- 2 Iterated tensor (S_{12}) interaction
- 3 Near zero-energy bound states



3 × 4 3 × 3 1 × 9 4 (

Sources of Nonperturbative Physics for NN

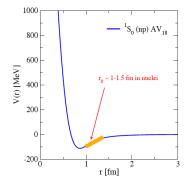
- 1 Strong short-range repulsion ("hard core")
- 2 Iterated tensor (S_{12}) interaction
- 3 Near zero-energy bound states



- Consequences:
 - In Coulomb DFT, Hartree-Fock gives dominate contribution ⇒ correlations are small corrections ⇒ DFT works!
 - cf. NN interactions ⇒ correlations ≫ HF ⇒ DFT fails??

Sources of Nonperturbative Physics for NN

- 1 Strong short-range repulsion ("hard core")
- 2 Iterated tensor (S_{12}) interaction
- 3 Near zero-energy bound states

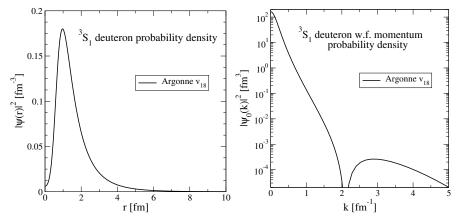


▶ ▲ ∃ ▶ ∃|∃ √Q(

- Consequences:
 - In Coulomb DFT, Hartree-Fock gives dominate contribution ⇒ correlations are small corrections ⇒ DFT works!
 - cf. NN interactions ⇒ correlations ≫ HF ⇒ DFT fails??
- However ...
 - the first two depend on the *resolution* \Longrightarrow different cutoffs
 - third one is affected by Pauli blocking

토▶∢토▶ 토|비 ���

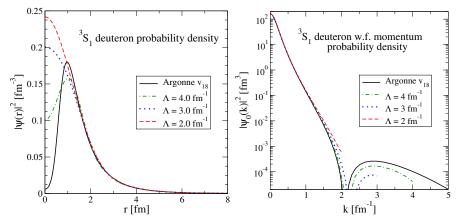
The Deuteron (Bound np) at High Resolution



- Repulsive core ⇒ short-distance suppression
 ⇒ important high-momentum (small λ) components
- Makes the many-body problem complicated!

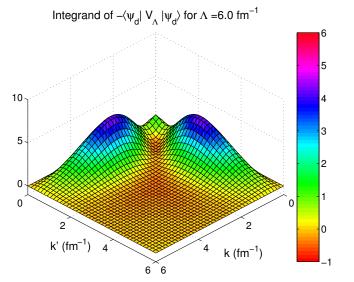
ミト 三日 のへ(

The Deuteron at Lower Resolutions

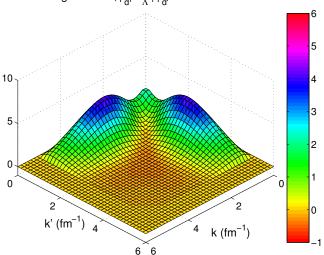


- Repulsive core ⇒ short-distance suppression / high-momentum components
- Low-momentum potential \implies much simpler wave function!

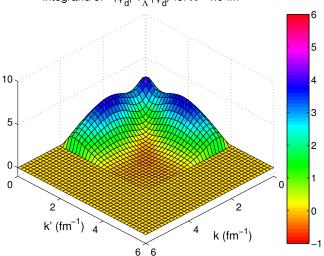
The Deuteron at Different Resolutions



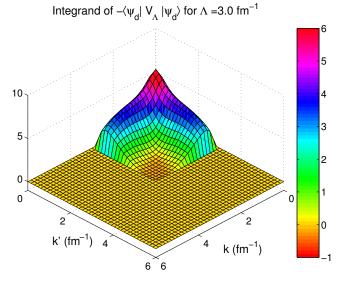
< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 三 > <



Integrand of – $\langle \psi_d | V_{\Lambda} | \psi_d \rangle$ for Λ =5.0 fm $^{-1}$



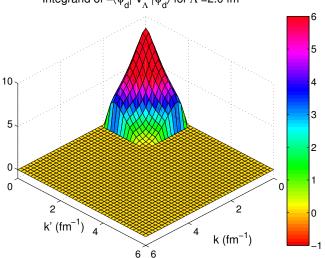
Integrand of $-\langle \psi_d | V_{\Lambda} | \psi_d \rangle$ for $\Lambda = 4.0 \text{ fm}^{-1}$



<ロ> <部> < 語> < 語> < 語> < 語 => の()

<ロト < 部 > < 注 > < 注 >

315

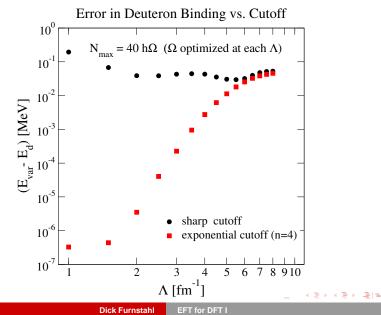


Integrand of $-\langle \psi_d | V_{\Lambda} | \psi_d \rangle$ for $\Lambda = 2.0 \text{ fm}^{-1}$

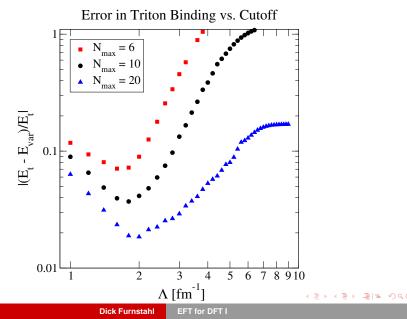
Dick Furnstahl EFT for DFT I

ne Analogs V_{lowk} NM

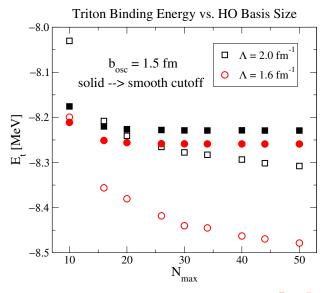
Consequence for Basis Expansions [nucl-th/0602017]



Consequence for Basis Expansions [nucl-th/0602017]

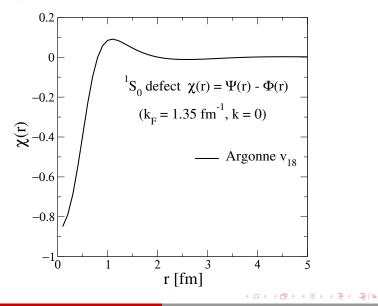


Consequence for Basis Expansions [nucl-th/0602017]



ロト・日本・日本・日本・日本・クタ(

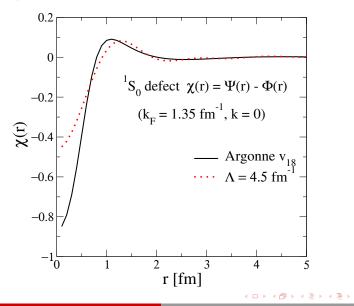
Two-Body Correlations in Nuclear Matter?



Dick Furnstahl EFT for DFT I

315

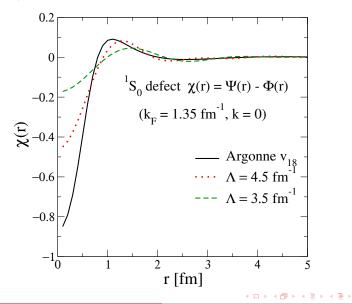
Two-Body Correlations in Nuclear Matter?



Dick Furnstahl EFT for DFT I

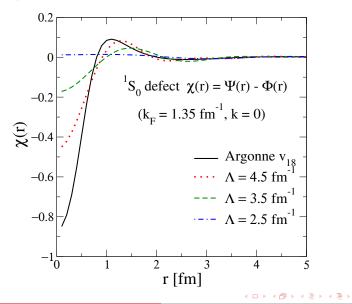
315

Two-Body Correlations in Nuclear Matter?



315

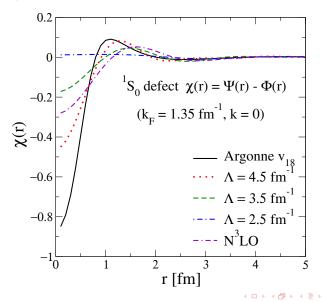
Two-Body Correlations in Nuclear Matter?



A 3 b

315

Two-Body Correlations in Nuclear Matter?



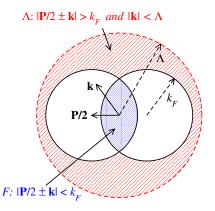
Why is In-Medium *T* Perturbative for $V_{low k}$?

• Phase space in pp-channel strongly suppressed:

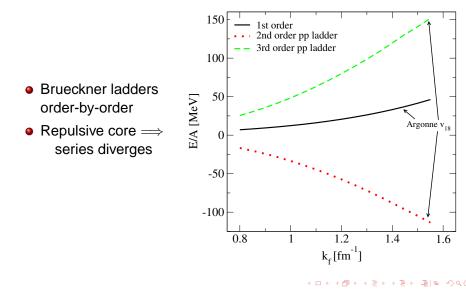
$$\int_{k_{\rm F}}^{\infty} q^2 \, dq \frac{V_{\rm NN}(k',q) \, V_{\rm NN}(q,k)}{k^2 - q^2}$$

$$\int_{k_{\rm F}}^{\Lambda} q^2 \, dq \frac{V_{\rm low\,k}(k',q) V_{\rm low\,k}(q,k)}{k^2 - q^2}$$

• Tames hard core, tensor, and bound state

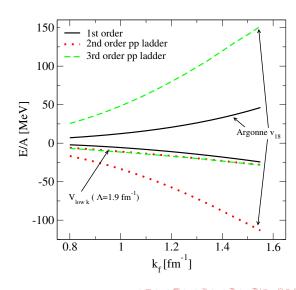


Nuclear Matter with NN Ladders Only



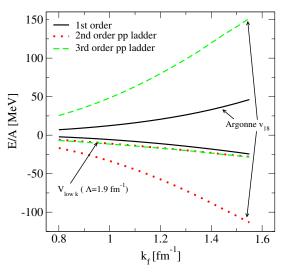
Nuclear Matter with NN Ladders Only

- Brueckner ladders order-by-order
- Repulsive core series diverges
- V_{low k} converges



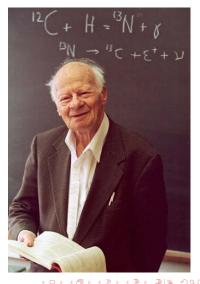
Nuclear Matter with NN Ladders Only

- Brueckner ladders order-by-order
- Repulsive core series diverges
- V_{low k} converges
- No saturation in sight!



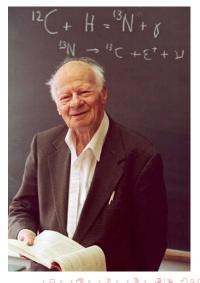
Deja Vu All Over Again?

- There were active attempts to transform away hard cores and soften the tensor interaction in the late sixties and early seventies.
- But the requiem for soft potentials was given by Bethe (1971): "Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density. In particular, a substantial tensor force is required."
- Next 30+ years trying to solve accurately with "hard" potential



Deja Vu All Over Again?

- There were active attempts to transform away hard cores and soften the tensor interaction in the late sixties and early seventies.
- But the requiem for soft potentials was given by Bethe (1971): "Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density. In particular, a substantial tensor force is required."
- Next 30+ years trying to solve accurately with "hard" potential
- But the story is not complete: three-nucleon forces (3NF)!

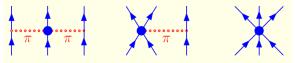


nalogs V_{lowk} N

母 トイヨト イヨト ヨヨ のの

$V_{\text{low }k}$ with Chiral 3NF

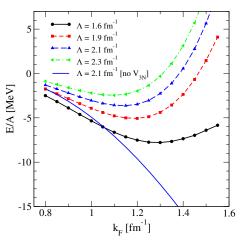
Ideal: Start with chiral NN + 3NF EFT and run ∧ ↓



- Possible now: Run NN and fit 3NF EFT at each Λ Bogner, Nogga, Schwenk, Phys. Rev. C 70 (2004) 061002
 - two-pion-exchange c_i's from NN PSA fit
 - two free parameters fit to ³H and ⁴He binding energies
 - ratio 2NF/3NF consistent with chiral counting

(Approximate) Nuclear Matter with NN and NNN

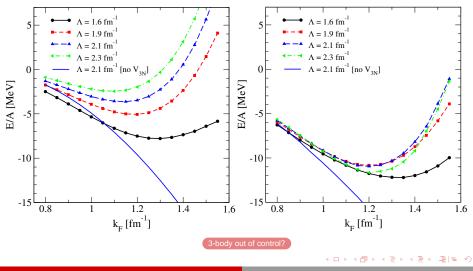
Hartree-Fock



(Approximate) Nuclear Matter with NN and NNN

Hartree-Fock

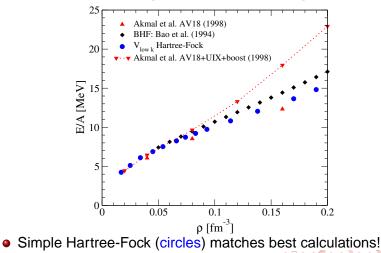
" \approx 2nd Order"



Dick Furnstahl EFT for DFT I

Low-Momentum Potential for Neutron Matter

 Removing hard core ⇒ simpler many-body starting point for neutron matter [Schwenk, Friman, Brown]



Outline

Overview of Fermion Many-Body Systems

Density Functional Theory for Coulomb Systems

DFT for Nuclei? \Longrightarrow EFT and RG

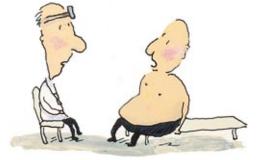
Summary I

Bethe and Calculating Nuclear Matter

• Hans Bethe in review of nuclear matter (1971):

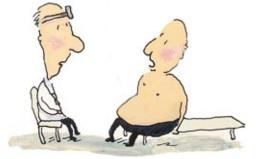
"The theory must be such that it can deal with any nucleon-nucleon (NN) force, including hard or 'soft' core, tensor forces, and other complications. It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary experimental evidence, like the binding energy of H^3)."

• There's an old vaudeville joke about a doctor and patient ...



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q(

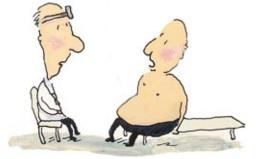
• There's an old vaudeville joke about a doctor and patient ...



Patient: Doctor, doctor, it hurts when I do this!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q(

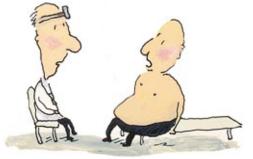
• There's an old vaudeville joke about a doctor and patient ...



Patient: Doctor, doctor, it hurts when I do this! **Doctor:** Then don't do that.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q(

• There's an old vaudeville joke about a doctor and patient ...



Patient: Doctor, doctor, it hurts when I do this! **Doctor:** Then don't do that.

 Weinberg's Third Law of Progress in Theoretical Physics: "You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry!"

One Hamiltonian for all problems and energy/length scales	Infinite # of low-energy potentials; different resolutions ⇒ different dof's and Hamiltonians

One Hamiltonian for all problems and energy/length scales	Infinite # of low-energy potentials; different resolutions → different dof's and Hamiltonians
Find the "best" potential	There is no best potential \implies use a convenient one!

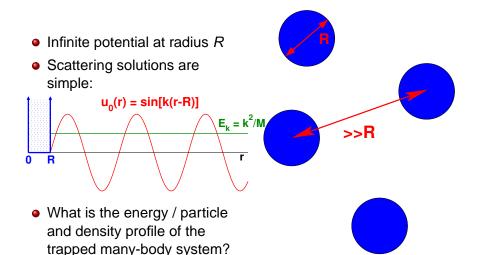
One Hamiltonian for all problems and energy/length scales	Infinite # of low-energy potentials; different resolutions → different dof's and Hamiltonians
Find the "best" potential	There is no best potential \implies use a convenient one!
Two-body data may be sufficient; many-body forces as last resort	Many-body data needed and many-body forces inevitable

One Hamiltonian for all problems and energy/length scales	Infinite # of low-energy potentials; different resolutions ⇒ different dof's and Hamiltonians
Find the "best" potential	There is no best potential \implies use a convenient one!
Two-body data may be sufficient; many-body forces as last resort	Many-body data needed and many-body forces inevitable
Avoid divergences	Exploit divergences (cutoff dependence as tool)

Dick Furnstahl EFT for DFT I

One Hamiltonian for all problems and energy/length scales	Infinite # of low-energy potentials; different resolutions ⇒ different dof's and Hamiltonians
Find the "best" potential	There is no best potential \implies use a convenient one!
Two-body data may be sufficient; many-body forces as last resort	Many-body data needed and many-body forces inevitable
Avoid divergences	Exploit divergences (cutoff dependence as tool)
Choose diagrams by "art"	Power counting determines diagrams and truncation error

"Simple" Many-Body Problem: Hard Spheres



▶ ▲ 프 ▶ 프 = ■ ■

Renormalization "Old" vs. "New"

More Deuteron Variational

Weinberg Eigenvalues

Dick Furnstahl EFT for DFT I

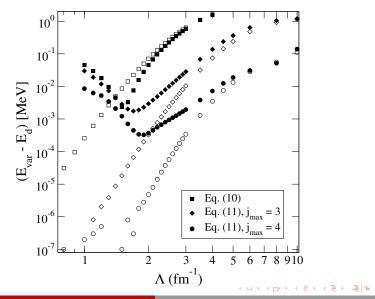
Renormalization is technical device to get rid of divergences in perturbation theory.	"Renormalization is an expression of the variation of the structure of physical interactions with changes in the scale of the phenomena being probed."
	 (ロ> < @> < 분> < 분> 분] =

device to get rid of	interactions with changes in
divergences in perturbation	the scale of the phenomena
theory.	being probed."
Focus on the high-energy	Focus on finite variation of
behavior and on ways of	physical interactions with finite
circumventing divergences	changes of energy
) 0 (글로 《로 》 《로 》 《타 》 《日 》

Renormalization is technical device to get rid of divergences in perturbation theory.	"Renormalization is an expression of the variation of the structure of physical interactions with changes in the scale of the phenomena being probed."
Focus on the high-energy behavior and on ways of circumventing divergences	Focus on finite variation of physical interactions with finite changes of energy
Cutoff Λ is artificial variable; $\Lambda \to \infty$ at end	 Λ is boundary of unknown/unresolved physics; keep Λ finite. Remove Λ dependence systematically
	4D> 4@> 4B> 4B> 3B> 90

Renormalization is technical device to get rid of divergences in perturbation theory.	"Renormalization is an expression of the variation of the structure of physical interactions with changes in the scale of the phenomena being probed."
Focus on the high-energy behavior and on ways of circumventing divergences	Focus on finite variation of physical interactions with finite changes of energy
Cutoff Λ is artificial variable; $\Lambda \to \infty$ at end	Λ is boundary of unknown/unresolved physics; keep Λ finite. Remove Λ dependence systematically
Non-renormalizable means no predictive power \implies renormalizable theories	Non-renormalizable \implies systematic expansion! Effective field theories

More Deuteron Variational Calculations



Convergence of the Born Series for Scattering

• Consider whether the Born series converges for given E

$$T(E) = V + V \frac{1}{E - H_0} V + V \frac{1}{E - H_0} V \frac{1}{E - H_0} V + \cdots$$

For fixed *E*, find (complex) eigenvalues η_ν(*E*) [Weinberg]

$$\frac{1}{E - H_0} V |\Gamma_{\nu}\rangle = \eta_{\nu} |\Gamma_{\nu}\rangle \implies T(E) |\Gamma_{\nu}\rangle = V |\Gamma_{\nu}\rangle (1 + \eta_{\nu} + \eta_{\nu}^2 + \cdots)$$
$$\implies T \text{ diverges if } any |\eta_{\nu}(E)| \ge 1$$

Convergence of the Born Series for Scattering

• Consider whether the Born series converges for given E

$$T(E) = V + V \frac{1}{E - H_0} V + V \frac{1}{E - H_0} V \frac{1}{E - H_0} V + \cdots$$

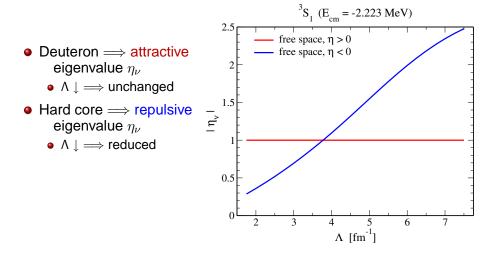
For fixed *E*, find (complex) eigenvalues η_ν(*E*) [Weinberg]

$$\frac{1}{E - H_0} V |\Gamma_{\nu}\rangle = \eta_{\nu} |\Gamma_{\nu}\rangle \implies T(E) |\Gamma_{\nu}\rangle = V |\Gamma_{\nu}\rangle (1 + \eta_{\nu} + \eta_{\nu}^2 + \cdots)$$
$$\implies T \text{ diverges if } any |\eta_{\nu}(E)| \ge 1$$

• For E < 0, same as finding η_{ν} where V/η_{ν} has bound state $(H_0 + V/\eta_{\nu})|b\rangle = E|b\rangle$ with $\eta_{\nu} > 0$ or $\eta_{\nu} < 0$

<□> < □> < □> < □> < □> < □> < □> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Weinberg Eigenvalues as Function of Cutoff

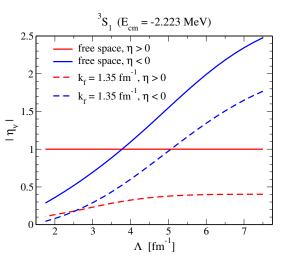


Dick Furnstahl EFT for DFT I

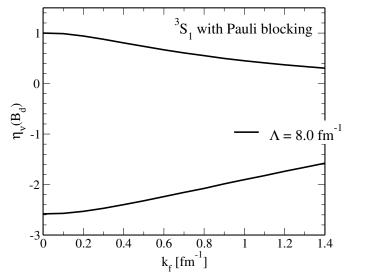
<□> < □> < □> < □> < □> < □> < □> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

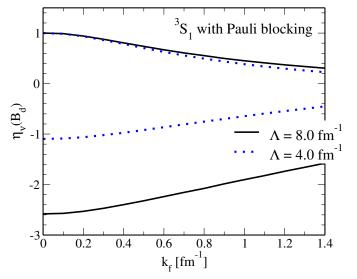
Weinberg Eigenvalues as Function of Cutoff

- Deuteron \Longrightarrow attractive eigenvalue η_{ν}
 - $\Lambda \downarrow \Longrightarrow$ unchanged
- Hard core \implies repulsive eigenvalue η_{ν}
 - $\Lambda \downarrow \Longrightarrow$ reduced
- In medium: both reduced
 - $\eta_{\nu} \ll 1$ for $\Lambda \approx 2 \, \text{fm}^{-1}$
 - \implies perturbative (in pp)

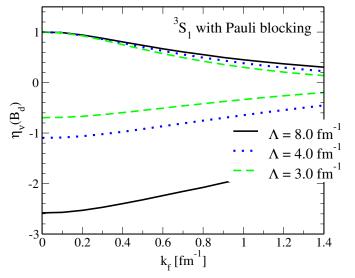


⇒ + = + = = + <0 <</p>

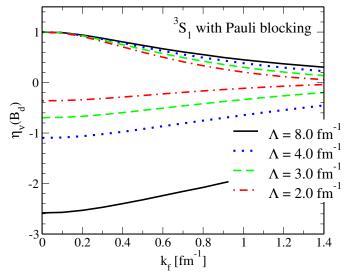




▲□▶▲圖▶▲圖▶▲圖▶ 圖圖 のQ(

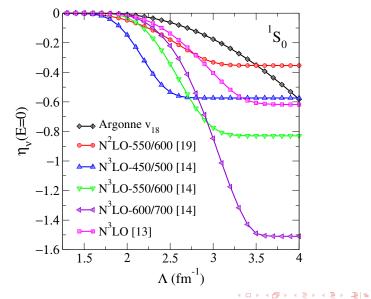


<ロト < 母 > < 臣 > < 臣 > 三国 = つへ(

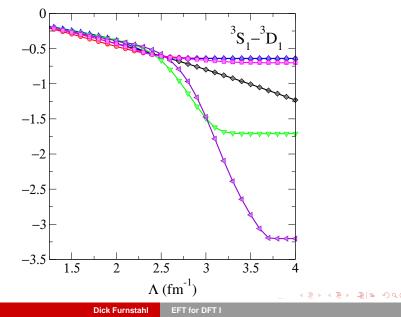


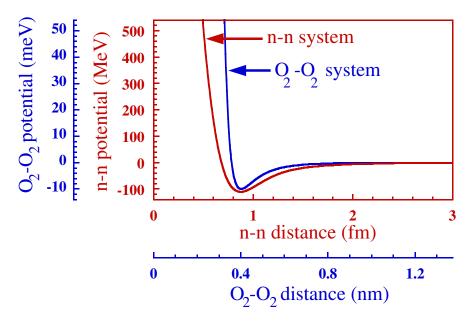
▲□▶▲御▶▲臣▶▲臣▶ 国目 のの(

Collapse of Weinberg Eigenvalues



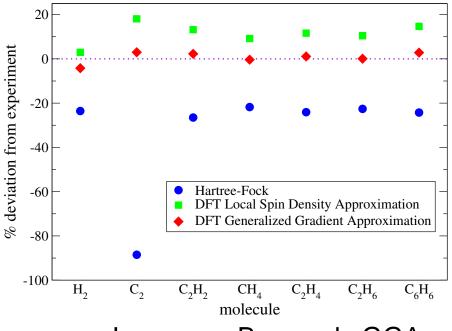
Collapse of Weinberg Eigenvalues





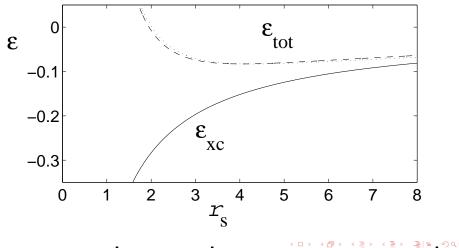
[figure borrowed from J. Dobaczewski]

Atomization Energies of Hydrocarbon Molecules

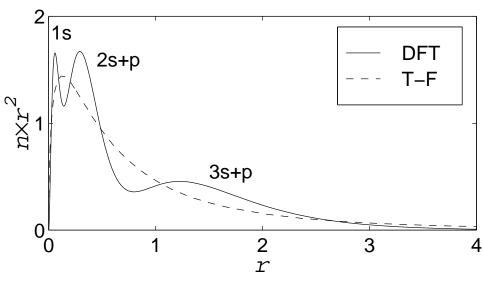


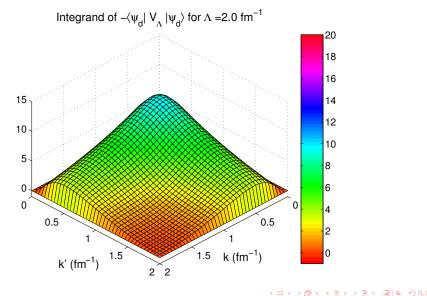
a a van Laeuwan-Baarande GGA 💷

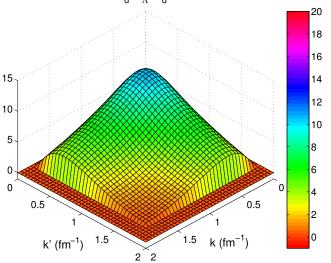
Local density approximation • fit $\mathcal{E}_{xc}(\rho)$ to Monte Carlo cal



Culation of uniform electron gas



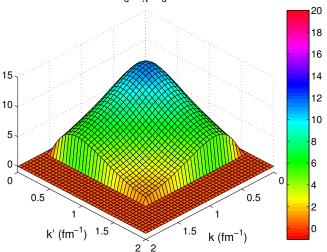




Integrand of $-\langle \psi_d | V_{\Lambda} | \psi_d \rangle$ for $\Lambda = 1.8 \text{ fm}^{-1}$

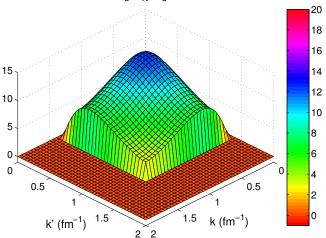
Dick Furnstahl EFT for DFT I

<□> < □> < □> < □> < □> < □> < □> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



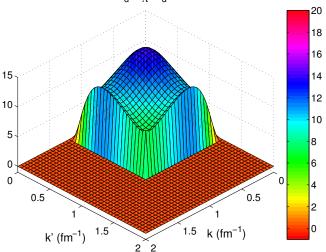
Integrand of $-\langle \psi_d | V_{\Lambda} | \psi_d \rangle$ for $\Lambda = 1.6 \text{ fm}^{-1}$

<□> < □> < □> < □> < □> < □> < □> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



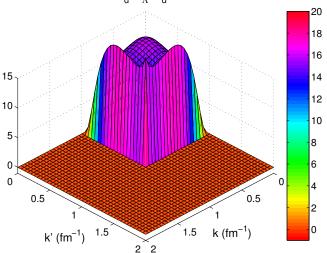
Integrand of $-\langle \psi_d | V_{\Lambda} | \psi_d \rangle$ for $\Lambda = 1.4 \text{ fm}^{-1}$

비로 서로에서로에 사람에 서비해



Integrand of $-\langle \psi_d | V_{\Lambda} | \psi_d \rangle$ for $\Lambda = 1.2 \text{ fm}^{-1}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

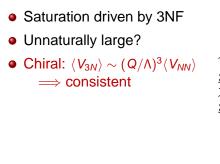


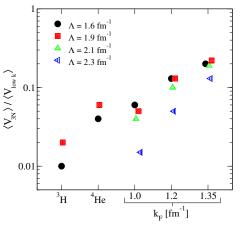
Integrand of $-\langle \psi_d | V_{\Lambda} | \psi_d \rangle$ for $\Lambda = 1.0 \text{ fm}^{-1}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Is Three-Body Contribution Out of Control?

Check ratios:



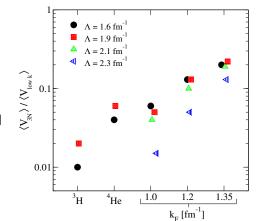


A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

문제 제품에 문제

Is Three-Body Contribution Out of Control?

Check ratios:



물 이 제 물 이 물 물

- Saturation driven by 3NF
- Unnaturally large?
- Chiral: $\langle V_{3N} \rangle \sim (Q/\Lambda)^3 \langle V_{NN} \rangle$ \implies consistent
- Power counting still needed with NN + 3N HF at LO
- Four-body contributions?