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Examples of Fermion Many-Body Systems

Collections of “fundamental” fermions (electrons, quarks, . . . )
or of composites of odd number of fermions (e.g., protons)

Isolated atoms or molecules
electrons interacting via long-range (screened) Coulomb

find charge distribution, binding energy, bond lengths, . . .

Bulk solid-state materials
metals, insulators, semiconductors, superconductors, . . .

Liquid 3He (superfluid!)

Cold fermionic atoms in (optical) traps [6Li or 7Li?]

Atomic nuclei

Neutron stars
neutron matter

color superconducting quark matter
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Nuclear and Cold Atom Many-Body Problems

Lennard-Jones and nucleon-nucleon potentials
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[figure borrowed from J. Dobaczewski]

Are there universal features of such many-body systems?

How can we deal with “hard cores” in many-body systems?
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The Big Picture (adapted from Richter @INPC2004)
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The Many-Body Schr ödinger Wave Function

[adapted from Joe Carlson]

How to represent the wave function for an A-body nucleus?

Consider 8Be (Z = 4 protons, N = 4 neutrons)

|Ψ〉 =
∑
σ,τ

χσχτφ(R) where R are the 3A spatial coordinates

χσ =↓1↑2 · · · ↓A (2A terms) = 256 for A = 8

χτ = n1n2 · · ·pA ( A!
N!Z ! terms) = 70 for 8Be

So for 8Be there are 17,920 complex functions
in 3A− 3 = 21 dimensions!

Suppose you represent this for a nucleus of size 10 fm with
a mesh spacing of 0.5 fm. You would need 1027 grid points!
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Hartree-Fock Wave Function
Best single Slater determinant in variational sense

|ΨHF〉 = det{φi(x), i = 1 · · ·A} , x = (r, σ, τ)

Hartree-Fock energy:

+ =⇒

〈ΨHF|Ĥ|ΨHF〉 =
A∑

i=1

~2

2M

∫
dx ∇φ∗i · ∇φi+

1
2

A∑
i,j=1

∫
dx

∫
dy |φi(x)|2v(x, y)|φj(y)|2

−1
2

A∑
i,j=1

∫
dx

∫
dy φ∗i (x)φi(y)v(x, y)φ∗j (y)φj(x) +

A∑
i=1

∫
dy vext(y)|φj(y)|2

Determine the φi by varying with fixed normalization:

δ

δφ∗i (x)

(
〈ΨHF|Ĥ|ΨHF〉 −

A∑
j=1

εj

∫
dy |φj(y)|2

)
= 0
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Hartree-Fock Wave Function

Best single Slater determinant in variational sense

|ΨHF〉 = det{φi(x), i = 1 · · ·A} , x = (r, σ, τ)

The φi(x) satisfy non-local Schrödinger equations:

−∇2

2M
φi(x) +

(
VH(x) + vext(x)

)
φi(x) +

∫
dy VE(x, y)φi(y) = εiφi(x)

with VH(x) =

∫
dy

A∑
j=1

|φj(y)|2v(x, y) , VE(x, y) = −v(x, y)
A∑

j=1

φj(x)φ∗j (y)

+ =⇒

Solve self-consistently; non-trivial because non-local
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Outline
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DFT for Nuclei? =⇒ EFT and RG

Summary I

Dick Furnstahl EFT for DFT I



Outline Intro DFT Nuclei Summary Appendix HK Kohn-Sham

Density Functional Theory (DFT)

Dominant application:
inhomogeneous
electron gas

Interacting point electrons
in static potential of
atomic nuclei

“Ab initio” calculations of
atoms, molecules, crystals,
surfaces, . . . 1970 1975 1980 1985 1990 1995
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Density Functional Theory (DFT)

Hohenberg-Kohn: There exists
an energy functional Evext[ρ] . . .

Evext[ρ] = FHK [ρ] +

∫
d3x vext(x)ρ(x)

FHK is universal (same for any
external vext) =⇒ H2 to DNA!

Useful if you can approximate
the energy functional

Introduce orbitals and minimize
energy functional =⇒ Egs, ρgs

Dick Furnstahl EFT for DFT I
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Kohn-Sham DFT for vext = VHO Harmonic Trap

VHO

=⇒
VKS

Interacting density in VHO ≡ Non-interacting density in VKS

Orbitals {ψi(x)} in local potential VKS([ρ], x)

[−∇2/2m + VKS(x)]ψi = εiψi =⇒ ρ(x) =
A∑

i=1

|ψi(x)|2

Find Kohn-Sham potential VKS([ρ], x) from δEvext[ρ]/δρ(x)

Solve self-consistently
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DFT for Solid-State or Molecular Systems

HK free energy for an inhomogeneous electron gas

FHK [ρ(x)] = TKS[ρ(x)] +
e2

2

∫
d3x d3x ′

ρ(x)ρ(x′)
|x − x′|

+ Exc[ρ(x)]

Then VKS = vext− eφ+ vxc with vxc(x) = δExc/δρ(x)

Kohn-Sham TKS[ρ(x)]: find normalized {ψi , εi} from(
− ~2

2m
∇2 + VKS(x)

)
ψi(x) = εiψi(x)

so that ρ(x) =
∑A

i=1 |ψi(x)|2 and

TKS[ρ(x)] =
A∑

i=1

〈ψi | −
~2

2m
∇2

i |ψi〉 =
A∑

i=1

εi −
∫

d3x ρ(x)VKS(x)
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Local density approximation: Exc[ρ(x)] ≈
∫

d3x Exc(ρ(x))

fit Exc(ρ) to Monte Carlo calculation of uniform electron gas
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in practice, use parametric formulas for energy density, e.g.,

Exc(ρ)/ρ = −0.458/rs − 0.0666G(rs/11.4)

with G(x) =
1
2

{
(1 + x)3 log(1 + x−1)− x2 +

1
2

x − 1
3

}
just like “naive” Hartree approach with additional potential:

vxc(x) =
d [Exc(ρ)]

dρ

∣∣∣∣
ρ=ρ(x)
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Density Functional Theory (DFT)

Dominant application:
inhomogeneous
electron gas

Interacting point electrons
in static potential of
atomic nuclei

“Ab initio” calculations of
atoms, molecules, crystals,
surfaces, . . .

HF is good starting point,
DFT/LDA is better,
DFT/GGA is best
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molecule
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Hartree-Fock
DFT Local Spin Density Approximation
DFT Generalized Gradient Approximation

Atomization Energies of Hydrocarbon Molecules

e.g., van Leeuwen–Baerends GGA

vxc(r) = −βρ1/3(r)
x2(r)

1 + 3βx(r) sinh−1(x(r))

with x = |∇ρ|/ρ4/3
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Quotes From the DFT Literature

A Chemist’s Guide to DFT (Koch & Holthausen, 2000)

“To many, the success of DFT appeared somewhat miraculous, and
maybe even unjust and unjustified. Unjust in view of the easy
achievement of accuracy that was so hard to come by in the wave
function based methods. And unjustified it appeared to those who
doubted the soundness of the theoretical foundations. ”

Density Functional Theory (AJP, Argaman & Makov, 2000)

“It is important to stress that all practical applications of DFT rest on
essentially uncontrolled approximations, such as the LDA . . . ”

Meta-Generalized Gradient Approximation (Perdew et al., 1999)

“Some say that ‘there is no systematic way to construct density
functional approximations.’ But there are more or less systematic ways,
and the approach taken . . . here is one of the former.”

Dick Furnstahl EFT for DFT I
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Preview of DFT as Effective Action

Recall ordinary thermodynamics with N particles at T = 0

Use a chemical potential µ as source to change 〈N̂〉

Ω(µ) = −kT ln Z (µ) and N = −
(
∂Ω

∂µ

)
TV

Invert to find µ(N), Legendre transform to F (N)

F (N) = Ω(µ(N)) + µ(N)N

=⇒ This is our energy function!

Generalize to spatially dependent chemical potential J(x)

Z (µ) −→ Z [J(x)] and µN = µ

∫
ψ†ψ −→

∫
J(x)ψ†ψ(x)

LT from ln Z [J(x)] to Γ[ρ(x)], where ρ = 〈ψ†ψ〉J =⇒ DFT!

Dick Furnstahl EFT for DFT I
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Table of the Nuclides
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Nuclear and Cold Atom Many-Body Problems

Lennard-Jones and nucleon-nucleon potentials
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[figure borrowed from J. Dobaczewski]

Are there universal features of such many-body systems?

How can we deal with “hard cores” in many-body systems?
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Nuclear Matter in Low-Order Perturbation Theory

Standard Argonne v18

potential

Brueckner ladders
order-by-order

1st order is
Hartree-Fock =⇒
unbound!

Repulsive core =⇒
series diverges
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Hartree-Fock Wave Function

Best single Slater determinant in variational sense

|ΨHF〉 = det{φi(x), i = 1 · · ·A} , x = (r, σ, τ)

The φi(x) satisfy non-local Schrödinger equations:

−∇
2

2M
φi(x) + VH(x)φi(x) +

∫
dy Vex(x, y)φi(y) = εiφi(x)

with VH(x) =

∫
dy

A∑
j=1

|φj(y)|2v(x, y) , Vex(x, y) = −v(x, y)
A∑

j=1

φj(x)φ∗j (y)

+ =⇒

Solve self-consistently; somewhat tricky because non-local
=⇒ much simpler if v(x, y) ∝ δ(x − y)
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Skyrme Hartree-Fock Energy Functionals
Skyrme: Do Hartree-Fock with V Skyrme

2 + V Skyrme
3 , where

〈k|V Skyrme
2 |k′〉 = t0 + 1

2 t1(k2 +k′2)+ t2k ·k′ + iW0(σ1 +σ2) ·k×k′

Motivates Skyrme energy density functional (for N = Z ):

E [ρ, τ , J] =
1

2M
τ +

3
8

t0ρ2 +
1

16
t3ρ2+α +

1
16

(3t1 + 5t2)ρτ

+
1

64
(9t1 − 5t2)(∇ρ)2 − 3

4
W0ρ∇ · J +

1
32

(t1 − t2)J2

where ρ(x) =
∑

i |φi(x)|2 and τ(x) =
∑

i |∇φi(x)|2 (and J)

Minimize E =
∫

dx E [ρ, τ, J] by varying the (normalized) φi ’s(
−∇ 1

2M∗(x)
∇+ U(x) +

3
4

W0∇ρ ·
1
i
∇× σ

)
φi(x) = εi φi(x) ,

U = 3
4 t0ρ+ ( 3

16 t1 + 5
16 t2)τ + · · · and 1

2M∗(x) = 1
2M + ( 3

16 t1 + 5
16 t2)ρ

Iterate until φi ’s and εi ’s are self-consistent
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Problems with Extrapolations

Mass formulas and energy functionals do well where there
is data, but elsewhere . . .
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Figure 6: Predicted two-neutron separation energies for the even-even Sn isotopes using several 
microscopic models based on effective nucleon-nucleon interactions and obtained with phenomenological 
mass formulas (shown in the inset).  While calculations agree well in the region where experimental data 
are available, they diverge for neutron-rich isotopes with N>82.  It is seen that the position of the neutron 
drip line is uncertain.  Unknown nuclear deformations or as yet uncharacterized phenomena, such as the 
presence of neutron halos or neutron skins, make theoretical predictions highly uncertain.  Experiments for 
the Sn isotopes with N=80–100 will greatly narrow the choice of viable models.   
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Questions and Criticisms of Skyrme HF

Typical [e.g., SkIII] model parameters (in units of MeV-fmn):
t0 = −1129 t1 = 395 t2 = −95 t3 = 14000 W0 = 120

These seem large; is there an expansion parameter?

Where does ρ2+α come from? Why not ρ2+β?

Parameter Fitting [von Neumann via Fermi via Dyson]:
“With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.”

Skyrme HF is only mean-field; too simple for NN correlations

Law of the Conservation of Difficulty
“Difficulty in a solution to a problem is always conserved
regardless of the technique used in the solution.”

How do we improve the approach? Is pairing treated correctly?

How does Skyrme HF relate to NN (and NNN) forces?
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(Nuclear) Many-Body Physics: “Old” Approach

One Hamiltonian for all
problems and energy/length
scales (not QCD!)

For nuclear structure, protons
and neutrons with a local
potential fit to NN data

Find the “best” potential NN potential with χ2/dof ≈ 1
up to ∼ 300 MeV energy

Two-body data may be
sufficient; many-body forces
as last resort

Let phenomenology dictate
whether three-body forces are
needed (answer: yes!)

Avoid (hide) divergences

Add “form factor” to suppress
high-energy intermediate
states; don’t consider cutoff
dependence

Choose approximations
by “art”

Use physical arguments (often
handwaving) to justify the
subset of diagrams used
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Why Use EFT For Many-Body Physics?

Systematic calculations with error estimates

Reliable, model independent extrapolation

Analogy between EFT and basic numerical analysis
naive error analysis: pick a method and reduce the mesh size

(e.g., increase grid points) until the error is “acceptable”

sophisticated error analysis: understand scaling and sources
of error (e.g., algorithm vs. round-off errors)
=⇒ Does it work as well as it should?

representation dependence =⇒ not all are equally effective!

extrapolation: completeness of an expansion basis

Quantum mechanics makes EFT trickier!
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Error Plots in Numerical Analysis
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The Representation Can Make A Difference!

E.g., elliptic integral:∫ 1

0

√
(1− x2)(2− x) dx

How do the numerical
errors behave?

After transformation:∫ π/2

0
sin2 y

√
2− cos y dy

Dick Furnstahl EFT for DFT I



Outline Intro DFT Nuclei Summary Appendix Skyrme Analogs Vlowk NM

The Representation Can Make A Difference!

E.g., elliptic integral:∫ 1

0

√
(1− x2)(2− x) dx

How do the numerical
errors behave?

After transformation:∫ π/2

0
sin2 y

√
2− cos y dy

10-7
10-6 10-5 10-4 10-3 10-2 10-1

mesh size h

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

re
la

tiv
e 

er
ro

r h
n to

 h
n-

1

trapezoid rule O(h2)

Simpson’s rule O(h4)

Milne’s rule O(h6)

Numerical Integration

before

Dick Furnstahl EFT for DFT I



Outline Intro DFT Nuclei Summary Appendix Skyrme Analogs Vlowk NM

The Representation Can Make A Difference!

E.g., elliptic integral:∫ 1

0

√
(1− x2)(2− x) dx

How do the numerical
errors behave?

After transformation:∫ π/2

0
sin2 y

√
2− cos y dy

10-7
10-6 10-5 10-4 10-3 10-2 10-1

mesh size h

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

re
la

tiv
e 

er
ro

r h
n to

 h
n-

1

trapezoid rule O(h2)

Simpson’s rule O(h4)

Milne’s rule O(h6)

Numerical Integration

before

after

Dick Furnstahl EFT for DFT I



Outline Intro DFT Nuclei Summary Appendix Skyrme Analogs Vlowk NM

The Representation Can Make A Difference!

E.g., elliptic integral:∫ 1

0

√
(1− x2)(2− x) dx

How do the numerical
errors behave?

After transformation:∫ π/2

0
sin2 y

√
2− cos y dy

10-7
10-6 10-5 10-4 10-3 10-2 10-1

mesh size h

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

re
la

tiv
e 

er
ro

r h
n to

 h
n-

1

trapezoid rule O(h2)

Simpson’s rule O(h4)

Milne’s rule O(h6)

Numerical Integration

before

after

Dick Furnstahl EFT for DFT I



Outline Intro DFT Nuclei Summary Appendix Skyrme Analogs Vlowk NM

The Representation Can Make A Difference!

E.g., elliptic integral:∫ 1

0

√
(1− x2)(2− x) dx

How do the numerical
errors behave?

After transformation:∫ π/2

0
sin2 y

√
2− cos y dy

10-7
10-6 10-5 10-4 10-3 10-2 10-1

mesh size h

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

re
la

tiv
e 

er
ro

r h
n to

 h
n-

1

trapezoid rule O(h2)

Simpson’s rule O(h4)

Milne’s rule O(h6)

Numerical Integration

before

after

Dick Furnstahl EFT for DFT I



Outline Intro DFT Nuclei Summary Appendix Skyrme Analogs Vlowk NM

Principles of Effective Low-Energy Theories

If system is probed at low energies, fine details not resolved

use low-energy variables for low-energy processes

short-distance structure can be replaced by something simpler
without distorting low-energy observables
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Wavelength and Resolution
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Sources of Nonperturbative Physics for NN

1 Strong short-range repulsion
(“hard core”)

2 Iterated tensor (S12) interaction

3 Near zero-energy bound states

Consequences:
In Coulomb DFT, Hartree-Fock gives dominate contribution

=⇒ correlations are small corrections =⇒ DFT works!
cf. NN interactions =⇒ correlations � HF =⇒ DFT fails??

However . . .
the first two depend on the resolution =⇒ different cutoffs
third one is affected by Pauli blocking
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The Deuteron (Bound np) at High Resolution
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Repulsive core =⇒ short-distance suppression
=⇒ important high-momentum (small λ) components

Makes the many-body problem complicated!
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The Deuteron at Lower Resolutions
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Repulsive core =⇒ short-distance suppression /
high-momentum components

Low-momentum potential =⇒ much simpler wave function!
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The Deuteron at Different Resolutions more
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Consequence for Basis Expansions [nucl-th/0602017]
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Consequence for Basis Expansions [nucl-th/0602017]
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Consequence for Basis Expansions [nucl-th/0602017]
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Two-Body Correlations in Nuclear Matter?
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Why is In-Medium T Perturbative for Vlow k?

Phase space in pp-channel
strongly suppressed:∫ ∞

kF

q2 dq
VNN(k ′,q)VNN(q, k)

k2 − q2

vs.∫ Λ

kF

q2 dq
Vlow k (k ′,q)Vlow k (q, k)

k2 − q2

Tames hard core, tensor,
and bound state

F: |P/2 ± k| < kF

Λ: |P/2 ± k| > kF

P/2

k

Λ

kF

|k| < Λand
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Nuclear Matter with NN Ladders Only

Brueckner ladders
order-by-order

Repulsive core =⇒
series diverges

Vlow k converges

No saturation in sight!
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Deja Vu All Over Again?
There were active attempts to
transform away hard cores and soften
the tensor interaction in the late sixties
and early seventies.

But the requiem for soft potentials was
given by Bethe (1971):
“Very soft potentials must be excluded
because they do not give saturation;
they give too much binding and too
high density. In particular, a
substantial tensor force is required.”

Next 30+ years trying to solve
accurately with “hard” potential

But the story is not complete:
three-nucleon forces (3NF)!

Dick Furnstahl EFT for DFT I



Outline Intro DFT Nuclei Summary Appendix Skyrme Analogs Vlowk NM

Deja Vu All Over Again?
There were active attempts to
transform away hard cores and soften
the tensor interaction in the late sixties
and early seventies.

But the requiem for soft potentials was
given by Bethe (1971):
“Very soft potentials must be excluded
because they do not give saturation;
they give too much binding and too
high density. In particular, a
substantial tensor force is required.”

Next 30+ years trying to solve
accurately with “hard” potential

But the story is not complete:
three-nucleon forces (3NF)!

Dick Furnstahl EFT for DFT I



Outline Intro DFT Nuclei Summary Appendix Skyrme Analogs Vlowk NM

Vlow k with Chiral 3NF

Ideal: Start with chiral NN + 3NF EFT and run Λ ↓

Possible now: Run NN and fit 3NF EFT at each Λ
Bogner, Nogga, Schwenk, Phys. Rev. C 70 (2004) 061002

two-pion-exchange ci ’s from NN PSA fit

two free parameters fit to 3H and 4He binding energies

ratio 2NF/3NF consistent with chiral counting
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(Approximate) Nuclear Matter with NN and NNN

Hartree-Fock
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“≈ 2nd Order”

3-body out of control?
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Low-Momentum Potential for Neutron Matter
Removing hard core =⇒ simpler many-body starting point

for neutron matter [Schwenk, Friman, Brown]
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Akmal et al. AV18 (1998)
BHF: Bao et al. (1994)
Vlow k Hartree-Fock
Akmal et al. AV18+UIX+boost (1998)

Simple Hartree-Fock (circles) matches best calculations!
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Outline

Overview of Fermion Many-Body Systems

Density Functional Theory for Coulomb Systems

DFT for Nuclei? =⇒ EFT and RG

Summary I
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Bethe and Calculating Nuclear Matter

Hans Bethe in review of nuclear matter (1971):

“The theory must be such that it can deal with any
nucleon-nucleon (NN) force, including hard or ‘soft’ core,
tensor forces, and other complications. It ought not to be
necessary to tailor the NN force for the sake of making the
computation of nuclear matter (or finite nuclei) easier, but
the force should be chosen on the basis of NN
experiments (and possibly subsidiary experimental
evidence, like the binding energy of H3).”
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EFT and RG Make Many-Body Physics Easier
There’s an old vaudeville joke about a doctor and patient . . .

Patient: Doctor, doctor, it hurts when I do this!
Doctor: Then don’t do that.
Weinberg’s Third Law of Progress in Theoretical Physics:

“You may use any degrees of freedom you like to describe
a physical system, but if you use the wrong ones, you’ll be
sorry!”
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(Nuclear) Many-Body Physics: “Old” vs. “New”

One Hamiltonian for all
problems and energy/length
scales

Infinite # of low-energy
potentials; different
resolutions =⇒ different dof’s
and Hamiltonians

Find the “best” potential There is no best potential
=⇒ use a convenient one!

Two-body data may be
sufficient; many-body forces
as last resort

Many-body data needed and
many-body forces inevitable

Avoid divergences Exploit divergences (cutoff
dependence as tool)

Choose diagrams by “art” Power counting determines
diagrams and truncation error
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“Simple” Many-Body Problem: Hard Spheres

Infinite potential at radius R

Scattering solutions are
simple:

0 R

u0(r) = sin[k(r-R)]

r

Ek = k2/M

What is the energy / particle
and density profile of the
trapped many-body system?

R

>>R
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Outline Renormalization deuteron Weinberg

Renormalization “Old” vs. “New”

More Deuteron Variational

Weinberg Eigenvalues
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Outline Renormalization deuteron Weinberg

Renormalization: “Old” vs. “New”

Renormalization is technical
device to get rid of
divergences in perturbation
theory.

“Renormalization is an
expression of the variation of
the structure of physical
interactions with changes in
the scale of the phenomena
being probed.”

Focus on the high-energy
behavior and on ways of
circumventing divergences

Focus on finite variation of
physical interactions with finite
changes of energy

Cutoff Λ is artificial variable;
Λ →∞ at end

Λ is boundary of
unknown/unresolved physics;
keep Λ finite. Remove Λ
dependence systematically

Non-renormalizable means no
predictive power =⇒
renormalizable theories

Non-renormalizable =⇒
systematic expansion!
Effective field theories
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More Deuteron Variational Calculations
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Eq. (10)
Eq. (11), jmax = 3
Eq. (11), jmax = 4
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Convergence of the Born Series for Scattering

Consider whether the Born series converges for given E

T (E) = V + V
1

E − H0
V + V

1
E − H0

V
1

E − H0
V + · · ·

For fixed E , find (complex) eigenvalues ην(E) [Weinberg]

1
E − H0

V |Γν〉 = ην |Γν〉 =⇒ T (E)|Γν〉 = V |Γν〉(1+ην +η2
ν + · · · )

=⇒ T diverges if any |ην(E)| ≥ 1

For E < 0, same as finding ην where V/ην has bound state

(H0 + V/ην)|b〉 = E |b〉 with ην > 0 or ην < 0
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Weinberg Eigenvalues as Function of Cutoff

Deuteron =⇒ attractive
eigenvalue ην

Λ ↓ =⇒ unchanged

Hard core =⇒ repulsive
eigenvalue ην

Λ ↓ =⇒ reduced

In medium: both reduced
ην � 1 for Λ ≈ 2 fm−1

=⇒ perturbative (in pp)
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free space, η > 0
free space, η < 0

3S1  (Ecm = -2.223 MeV)
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Weinberg Eigenvalues as Function of Density
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Collapse of Weinberg Eigenvalues
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Collapse of Weinberg Eigenvalues
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Lennard-Jones and nucleon-nucleon potentials
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[figure borrowed from J. Dobaczewski]

Are there universal features of such many-body systems?

How can we deal with “hard cores” in many-body systems?



Dominant application:
inhomogeneous
electron gas

Interacting point electrons
in static potential of
atomic nuclei

“Ab initio” calculations of
atoms, molecules, crystals,
surfaces, . . .

HF is good starting point,
DFT/LDA is better,
DFT/GGA is best

H2 C2 C2H2 CH4 C2H4 C2H6 C6H6

molecule
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Hartree-Fock
DFT Local Spin Density Approximation
DFT Generalized Gradient Approximation

Atomization Energies of Hydrocarbon Molecules

e.g., van Leeuwen–Baerends GGA

vxc(r) = −βρ1/3(r)
x2(r)

1 + 3βx(r) sinh−1(x(r))

with x = |∇ρ|/ρ4/3



Local density approximation: Exc[ρ(x)] ≈
∫

d3x Exc(ρ(x))

fit Exc(ρ) to Monte Carlo calculation of uniform electron gas
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ε
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DFT
T−F

in practice, use parametric formulas for energy density, e.g.,

Exc(ρ)/ρ = −0.458/rs − 0.0666G(rs/11.4)

with G(x) =
1
2

{
(1 + x)3 log(1 + x−1)− x2 +

1
2

x − 1
3

}
just like “naive” Hartree approach with additional potential:

vxc(x) =
d [Exc(ρ)]

dρ

∣∣∣∣
ρ=ρ(x)



Local density approximation: Exc[ρ(x)] ≈
∫

d3x Exc(ρ(x))

fit Exc(ρ) to Monte Carlo calculation of uniform electron gas

0 1 2 3 4 5 6 7 8

−0.3

−0.2

−0.1

0

rs

ε

ε
xc

ε
tot

0 1 2 3 4
0

1

2
Ar    Z=18

r

n
×r

2

1s
2s+p

3s+p

DFT
T−F

in practice, use parametric formulas for energy density, e.g.,

Exc(ρ)/ρ = −0.458/rs − 0.0666G(rs/11.4)

with G(x) =
1
2

{
(1 + x)3 log(1 + x−1)− x2 +

1
2

x − 1
3

}
just like “naive” Hartree approach with additional potential:

vxc(x) =
d [Exc(ρ)]

dρ

∣∣∣∣
ρ=ρ(x)



Outline Renormalization deuteron Weinberg

The Deuteron at Different Resolutions back
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The Deuteron at Different Resolutions back

0
0.5

1
1.5

2

0
0.5

1
1.5

2

0

5

10

15

k (fm−1)

Integrand of −〈ψd| V
Λ
 |ψd〉 for Λ =1.6 fm−1

k’ (fm−1) 0

2

4

6

8

10

12

14

16

18

20

Dick Furnstahl EFT for DFT I



Outline Renormalization deuteron Weinberg

The Deuteron at Different Resolutions back

0
0.5

1
1.5

2

0
0.5

1
1.5

2

0

5

10

15

k (fm−1)

Integrand of −〈ψd| V
Λ
 |ψd〉 for Λ =1.4 fm−1

k’ (fm−1)
0

2

4

6

8

10

12

14

16

18

20

Dick Furnstahl EFT for DFT I
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Outline Renormalization deuteron Weinberg

The Deuteron at Different Resolutions back
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Outline Renormalization deuteron Weinberg

Is Three-Body Contribution Out of Control? back

Saturation driven by 3NF

Unnaturally large?

Chiral: 〈V3N〉 ∼ (Q/Λ)3〈VNN〉
=⇒ consistent

Power counting still needed
with NN + 3N HF at LO

Four-body contributions?

Check ratios:
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